Jul 2018 – Sep 2018

Tom Willis

 \square tom.willis@live.com \checkmark twillis.xyz

in twillis1993

O twillis209

G Thomas W. Willis

I am a final-year PhD student in biostatistics at the University of Cambridge and will defend in November 2024. I have worked in bioinformatics and statistics in academia and industry, predominantly on GWAS and RNAseq analysis. My PhD work relates to the role of common variants in rare disease, in particular in the antibody deficiencies selective IgA deficiency and common variable immunodeficiency. I have an interest in reproducibility and have leveraged my background in computer science to develop well-maintained, easily-deployed scientific software and pipelines to support my work.

Skills

Programming	Ancillaries	Bioinformatics (cont.)
\circ Daily: Python, R, bash in a	\circ git, CMake, docker, conda	\circ snakemake workflows
Linux environment	\circ Unix-style core utilities like	\circ Contributions to R packages
• Infrequently: C++ (alone and integrated with R through Rcpp	awk, sed, etc.	locuszoomr and fcfdr, use
	• Use of slurm and the SGE/UGE system on HPC	of devtools, conda, and testthat in package devel-
\circ Past experience: Java, C,	facilities, parallelism with	opinent
SQL, Javascript with Vue 3	openmp, parallel, etc.	$\circ~\mathrm{GWAS}~\mathrm{with}~\mathtt{fastGWA-GLMM}$
and Cloud services, use of MPI and OpenCL for GPU programming	Bioinformatics	• Past RNA-seq experience
	$\circ~{\rm Routine}~{\rm *seq}$ utilities such as	with salmon and DESeq2
	plink, samtools, etc.	

Education

University of Cambridge PhD Biostatistics
Oct 2020 - Nov 2024
Thesis on the role of common variants in antibody deficiencies.
End-to-end generation and analysis of GWAS data from genotype imputation and QC to regression with fastGWA-GLMM, visualisation, hit work-up, and heritability and genetic correlation estimation.
Improvement of an existing nonparametric method, the 'GPS test', for the detection of genetic similarity in

the small-sample context, implemented in C++. University of Leeds *MSc Statistics, Distinction* Oct 2019 – Sep 2020

Taught Master's with dissertation on the phenomenon of zero inflation in scRNA-seq data.
 University of Leeds BSc Computer science, 1st class
 Oct 2015 – Jun 2019

Experience

Bioinformatics intern Novartis Institutes for BioMedical Research, Emeryville, CA Jul 2017 – Jun 2018

- Bulk RNA-seq in bacteria to assist antibiotic development and interrogate mechanisms of resistance, culminating in coauthorship of a paper characterising regulation of efflux pump expression in *Pseudomonas aeruginosa* (Ranjitkar et al.)
- Development of a Python 2 library for querying internal genomic data and metadata for use cases common across disease areas. The library's API was exposed to wet-lab staff through a web portal. Development with bioinformatic libraries like biopython and faidx.

Amgen Scholar University of Cambridge

• Bulk *de novo* RNA-seq in two species of African cichlid fish to identify differential expression of orthologous transcripts in testes and liver and novel ORFs contributing to speciation, published as Puntambekar et al. (see Publications).

Publications

Leveraging pleiotropy identifies common-variant associations with selec-	
tive IgA deficiency	
Thomas W. Willis, Effrossyni Gkrania-Klotsas, Nicholas J. Wareham, Eoin McKinney,	
Paul A. Lyons, Kenneth G. C. Smith, and Chris Wallace	
10.1016/j.clim.2024.110356 🗹	
Accurate detection of shared genetic architecture from GWAS summary	Aug 2023
statistics in the small-sample context	
Thomas W. Willis and Chris Wallace	
10.1371/journal.pgen.1010852	
Leveraging auxiliary data from arbitrary distributions to boost GWAS	Oct 2021
discovery with Flexible cFDR	
Anna Hutchinson, Guillermo Reales, Thomas W. Willis, and Chris Wallace	
10.1371/journal.pgen.1009853	
Evolutionary divergence of novel open reading frames in cichlids specia-	Dec 2020
tion	
Shraddha Puntambekar <i>et al.</i>	
10.1038/s41598-020-78555-0 🗹	
Target (MexB)- and Efflux-Based Mechanisms Decreasing the Effective-	Jan 2019
ness of the Efflux Pump Inhibitor D13-9001 in Pseudomonas aeruginosa	
PAO1 (abbrv.)	
Srijan Ranjitkar et al.	
10.1128/aac.01718-18 🗹	

Conference proceedings

Talks:	
Human Immunology: Genes and Environment (Wellcome)	May 2024
Leveraging pleiotropy to interrogate the common-variant architecture of the most	
common inborn error of immunity	
Young Statisticians Meeting (Royal Statistical Society)	Aug 2022
Accurate detection of genetic sharing between rare and common diseases enables	
more powerful association discovery in the rare disease context	
Symposium on Biological and Life Sciences (Babraham Institute, Cambridge, UK)	Nov 2021
Unravelling the genetics of primary immunodeficiency through genomic pleiotropy	
Posters:	
Genomics of Rare Diseases (Wellcome)	Apr 2023
$GW\!AS$ meta-analysis and the conditional false discovery rate overcome limited power	
in a common variant study of rare immunodeficiency	
31st Annual Meeting of the International Genetic Epidemiology Society	Sep 2022
Accurate detection of genetic sharing between rare and common diseases enables	
more powerful association discovery in the rare disease context	
50th European Mathematical Genetics Meeting	Apr 2022
Leveraging genetic pleiotropy for more powerful association discovery in the rare	
$disease\ context$	
Scholarships and awards	
Amgen Scholarship Funding for summer research internship at the University of	2018
Cambridge as part of the European Amgen Scholars programme	
The Wren, Hutchinson, and Cook Prizes Awarded for achieving the best	2016, 2017, 2019
academic performance in each year of my BSc	
Faculty of Engineering Excellence Scholarship Awarded for ongoing academic	2015-2019
performance	